

Available online at www.sciencedirect.com

Journal of Fluorine Chemistry 124 (2003) 1-3

www.elsevier.com/locate/jfluchem

Phase diagram of KF–InF₃ system

Rong Chen^{*}, Qiyun Zhang

College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China Received 23 July 2002; received in revised form 16 January 2003; accepted 6 June 2003

Abstract

The phase diagram of the KF–InF₃ system was investigated by DTA and XRD methods. In the system, two incongruent compounds, 2KF·InF₃ and KInF₄, were observed. The compound 2KF·InF₃ was XRD-indexed as orthorhombic, where $a = 8.870 \pm 0.003$, $b = 6.271 \pm 0.002$, $c = 4.553 \pm 0.001$ Å. Another compound KInF₄ polymorphously reacted at 784 °C. The room temperature phase was tetragonal, where $a = 7.160 \pm 0.004$ and $c = 5.068 \pm 0.007$ Å. The structure of higher temperature phase has not been determined yet. An eutectic point was observed at 785 °C at 19.0 mol% InF₃. © 2003 Elsevier B.V. All rights reserved.

Keywords: KF; InF₃; Phase diagram

1. Introduction

The molten salt of eutectic composition of the KF–AlF₃ system is widely used as Nocolok flux in aluminum brazing technique [1–3]. Compared with KF–AlF₃ system, whether the resembling system KF–InF₃ in which indium is the similar element with aluminum in the periodic system, has the similar brazing properties was the tentative idea. For this consideration, the phase diagram of the KF–InF₃ system was finely researched in this paper.

2. Results and discussion

Phase diagram of the system $KF-InF_3$, based on the results of DTA (as shown in Table 1) is given in Fig. 1. Invariant points are listed in Table 2.

Two incongruent compounds, $2KF \cdot InF_3$ and $KInF_4$ were observed in this system as shown in Fig. 1. The former decomposed into $KInF_4$ and liquid phase P₁ at 808 °C. The latter has a polymorphic reaction at 784 °C, and decomposed into InF_3 and liquid phase P₂ at 826 °C. Eutectic point E melting at 785 °C with 19.0 mol% InF_3 was observed between KF and $2KF \cdot InF_3$.

The compounds $2KF \cdot InF_3$ and $KInF_4$ have been confirmed and indexed by XRD analysis. The XRD data

0022-1139/\$ - see front matter © 2003 Elsevier B.V. All rights reserved. doi:10.1016/S0022-1139(03)00167-2

of 2KF·InF₃ are listed in Table 3. The analytical results indicated that 2KF·InF₃ is orthorhombic, where $a = 8.870 \pm 0.003$, $b = 6.271 \pm 0.002$ and $c = 4.553 \pm 0.001$ Å. The KInF₄ phase at room temperature is tetragonal, where $a = 7.160 \pm 0.004$ and $c = 5.068 \pm 0.007$ Å (see Table 4).

In the XRD analysis, only the compositions of $2KF \cdot InF_3$ and $KInF_4$ could be indexed. Any other composition in the system expressed a mixture XRD patterns and could not be indexed. That meant, only the mentioned two compounds could exist in the system.

The temperature effects about 784–785 °C from DTA data acrossed all over the compositions in the system. The eutectic temperature between KF and 2KF·InF₃ should not pass over the composition of 33 mol% InF₃ obviously. Therefore, the effects in the composition range higher than 33 mol% InF₃ is caused by other reaction, the only deduction of which is a polymorphous reaction of the KInF₄ itself. The phase change of KInF₄ occurs at 784 °C and this temperature happened to be close to the eutectic temperature at 785 °C between KF and 2KF·InF₃. The higher temperature phase β -KInF₄ has not been XRD-indexed yet.

Grannec et al. firstly studied the KF–InF₃ system, samples of which was prepared by the reaction of KF with InF₃ in a sealed metal tube at 500–600 °C, and reported the existence of K₃InF₆, K₅In₃F₁₄, KInF₄ and KIn₂F₇ [4]. The results were quite different from ours, even the common recognition compound KInF₄ also be reported in different structures, for which Grannec reported as orthorhombic where a = 9.930, b = 7.760 and c = 12.57 Å.

^{*} Corresponding author. Fax: +86-10-6275-1496.

E-mail address: chenr@nsfc.gov.cn (R. Chen).

Table 3

Table 1 DTA data of the system KF–InF₃

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	KF (mol%)	Liquid's temperature (°C)	Eutectic temperature (°C)	Incongruent 1 temperature (°C)	Polymorphic transition (°C)	Incongruent 1 temperature (°C)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.0	858				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	97.0	847				
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	93.0	830	784			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	90.8	826	789			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87.4	826	789			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	85.7	822	790			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	82.4	809	789			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	78.2	843	786			824
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	75.0	862	783			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	71.0		787	806		834
62.5 982 773 810 825 60.0 828 823 57.5 823 55.0 810 786 50.0 775 47.5 785 817 45.0 793 40.0 823 36.8 828 33.3 783 827 25.0 830	66.3	905	781			
$\begin{array}{ccccc} 60.0 & & & 828 \\ 57.5 & & & 823 \\ 55.0 & & & 822 \\ 51.6 & 810 & 786 & 828 \\ 50.0 & & 775 & \\ 47.5 & & 785 & 817 \\ 45.0 & & & 793 & \\ 40.0 & & & & 823 \\ 36.8 & & & & 828 \\ 33.3 & & 783 & 827 \\ 25.0 & & & 830 \end{array}$	62.5	982	773	810		825
$\begin{array}{ccccccc} 57.5 & & & 823 \\ 55.0 & & & 822 \\ 51.6 & 810 & 786 & 828 \\ 50.0 & & 775 & & \\ 47.5 & & 785 & 817 \\ 45.0 & & & 793 & & \\ 40.0 & & & & 823 \\ 36.8 & & & & 828 \\ 33.3 & & 783 & 827 \\ 25.0 & & & & 830 \\ \end{array}$	60.0					828
$\begin{array}{cccccc} 55.0 & & & 822 \\ 51.6 & 810 & 786 & 828 \\ 50.0 & & 775 & & \\ 47.5 & & 785 & 817 \\ 45.0 & & & 793 & & \\ 40.0 & & & & 823 \\ 36.8 & & & & 828 \\ 33.3 & & & 783 & 827 \\ 25.0 & & & & 830 \end{array}$	57.5					823
$\begin{array}{ccccccc} 51.6 & 810 & 786 & 828 \\ 50.0 & 775 & & \\ 47.5 & 785 & 817 \\ 45.0 & 793 & & \\ 40.0 & & & 823 \\ 36.8 & & & 828 \\ 33.3 & 783 & 827 \\ 25.0 & & & 830 \end{array}$	55.0					822
50.0 775 47.5 785 817 45.0 793 823 36.8 828 33.3 783 827 25.0 830	51.6			810	786	828
47.578581745.0793140.082336.882833.378382725.0830	50.0				775	
45.0 793 40.0 823 36.8 828 33.3 783 827 25.0 830	47.5				785	817
40.0 823 36.8 828 33.3 783 827 25.0 830	45.0				793	
36.8 828 33.3 783 827 25.0 830	40.0					823
33.3 783 827 25.0 830	36.8					828
25.0 830	33.3				783	827
	25.0					830
17.0 827	17.0					827

We can hardly comment and discuss the differences between the two results but we would rather believe the reliability of our data, because the start material InF_3 was made by high pure metal indium, instead of commercial chemical reagent.

Fig. 1. Phase diagram of the system KF-InF₃.

Table 2 Invariant points in the system KF–InF₃

Invariant points	°C	InF ₃ mol%
Е	785	19.0
P ₁	808	20.0
P ₂	826	21.0

Indexed data of 2KF·InF ₃ ^a						
d (Å) (observed)	<i>d</i> (Å) (calculated)	<i>I</i> / <i>I</i> ₀	h	k	l	
5.136	5.122	57	1	1	0	
4.436	4.436	30	2	0	0	
3.405	3.410	3	1	1	1	
3.135	3.140	100	0	2	0	
2.673	2.673	18	3	1	0	
	2.479		3	0	1	
2.479	2.478	8	1	2	1	
2.304	2.307	9	3	1	1	
2.212	2.215	30	4	0	0	
	2.205		1	0	2	
2.034	2.034	9	1	3	0	
1.807	1.810	35	4	2	0	
	1.804		3	0	2	
	1.803		1	2	2	
	1.707		5	1	0	
	1.706		3	3	0	
1.704	1.703	13	2	2	2	
1.564	1.564	14	3	2	2	
1.496	1.496	12	1	0	3	
1.475	1.475	9	0	1	3	
	1.400		2	1	3	
1.399	1.399	8	5	0	2	
	1.351		3	0	3	
1.350	1.350	4	1	2	3	
	1.278		5	2	2	
1.276	1.277	3	1	4	2	
	1.240		3	2	3	
	1.241		6	0	2	
1.239	1.239	4	2	4	2	
	1.228		4	1	3	
1.227	1.277	3	0	3	3	
	1.184		2	3	3	
1.182	1.183	6	3	4	2	

^a Orthorhombic cell: $a = 8.870 \pm 0.003$, $b = 6.271 \pm 0.002$, $c = 4.553 \pm 0.001$ Å.

Table 4 Indexed data of $KInF_4^{a}$

d (Å) (observed)	d (Å) (calculated)	<i>I</i> / <i>I</i> ₀	h	k	l
4.149	4.150	12	1	0	1
2.928	2.926	100	2	0	1
2.537	2.533	30	0	0	2
	2.534		2	2	0
2.390	2.390	6	1	0	2
	2.388		3	0	0
2.162	2.160	6	3	0	1
1.988	1.988	10	2	1	2
	1.986		3	2	0
1.849	1.849	3	3	2	1
1.791	1.791	37	2	2	2
	1.789		4	0	0
	1.738		3	0	2
1.737	1.737	3	4	1	0
	1.602		1	1	3
	1.601		3	3	1
1.600	1.600	1	4	2	0
	1.528		2	0	3

Table 4 (Continued)

d (Å) (observed)	<i>d</i> (Å) (calculated)	<i>I</i> / <i>I</i> ₀	h	k	l
1.527	1.527	24	4	2	1
1.462	1.462	5	4	0	2
1.433	1.432	2	4	1	2
	1.431		5	0	0
	1.379		3	0	3
1.378	1.378	3	5	0	1
1.287	1.287	2	3	2	3
	1.286		5	2	1
	1.267		0	0	4
1.266	1.266	4	4	4	0
	1.178		5	2	2
1.176	1.176	3	6	1	0
	1.162		4	2	3
1.161	1.161	6	6	0	1
	1.133		2	2	4
	1.133		4	4	2
1.132	1.132	4	6	1	0

^a Tetragonal cell: $a = 7.160 \pm 0.004$, $c = 5.068 \pm 0.007$ Å.

3. Conclusion

- 1. The KF–InF₃ system is one of eutectic type. The eutectic point E is located in 19.0 mol% InF₃ at 785 $^{\circ}$ C.
- 2. Two intermediate compounds $2\text{KF}\cdot\ln\text{F}_3$ and KInF_4 were observed in the system. The former peritectically melts at 808 °C, the later has a crystalline transition at 784 °C and a peritectic decomposition at 826 °C.

4. Experimental

4.1. Preparation of InF_3

A certain amount of metal indium (>99.99%) was dissolved in hydrofluoric acid in a polyethylene beaker under the protection of a N₂ atmosphere, and heated on a water bath. For enhancing the dissolution, an oxidiser H₂O₂ was dropped-in during continuous stirring. After the reaction between In and HF ended, the solution was evaporated on a water bath. The obtained white crystal InF₃·*x*H₂O were put into a Pt crucible then heated at 200 °C for 2 h under a HF atmosphere. A white powdery product was finally obtained, and was identified as anhydrous InF₃ by XRD analysis.

4.2. Preparation of samples

Twenty-four samples were prepared by reacting of anhydrous InF_3 with KF and HF. The products were placed in he Pt crucibles, and dried at 200 °C, and then annealed for 48 h at 500 °C. During the annealing process, grinding and mixing of the samples were carried out repeatedly in order to obtain homogeneous samples.

4.3. Differential thermal analysis

The CR-G type high-temperature DTA equipment (Beijing Optical Instrument) was used and calibrated with the melting points of some standard substances on the heating and cooling curves. Calcined aluminum oxide was used as a reference substance. The heating rate was 15 °C/min. Liquid's temperature was determined from the cooling curve. Experiments were carried out under the dry air (relative humidity < 30%). The error in measuring temperature was ± 3 °C.

4.4. X-ray powder diffraction analysis

The compounds observed in the system were determined by Rigaku Dmax 2400 X-ray diffractometer (Radiation Cu K α - λ = 1.5409 Å, Filter Ni) at room temperature. Silicon powder was added as a cross-reference for fine-tuning the results of determination.

Acknowledgements

The authors wish to acknowledge the support from Beijing Science Fund.

References

- B. Pillips, C.M. Warshaw, I. Mockrin, J. Am. Ceram. Soc. 48 (12) (1966) 631–634.
- [2] B. Jenssen, Thesis, The University of Trondheim, NTH, Trondheim, 1969.
- [3] R. Chen, G. Wu, Q. Zhang, J. Am. Ceram. Soc. 83 (12) (2000) 3196– 3198.
- [4] J. Grannec, J.C. Champarnaud, J. Portier, Bull. Soc. Chim. Fr. 11 (1970) 3664–3862.